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Periodic steady vortices in a stagnation-point flow 

By OLIVER S .  KERRT AND J. W. D O L D  
School of Mathematics, University of Bristol, Bristol BS8 4TW, UK 

(Received 8 July 1993 and in revised form 14 April 1994) 

A stagnation point flow of the form U = (0, Ay,  - Az) is unstable to three-dimensional 
disturbances. It has been shown that the vorticity components of such a disurbance 
that are perpendicular to the direction of the diverging flow will decay, and that the 
parallel component of vorticity can grow. We augment these findings by showing that 
fully nonlinear steady-state deviations from this flow exist that consist of a periodic 
distribution of counter-rotating vortices whose axes lie parallel to the direction of the 
diverging flow. These solutions have two independent parameters : the dimensionless 
strength of the converging flow, and the intensity of the vortices. We examine the 
structure of these vortices in the asymptotic limits of large strain rate of the converging 
flow, and of large amplitude of the vortices. 

1. Introduction 
In this paper we look at three-dimensional steady perturbations (which need not be 

small) to a steady two-dimensional stagnation point flow, or extensional flow, of the 
form U = (0, Ay,  - A z )  with A > 0. Originally motivated by a desire for a simple model 
of mixing between converging streams of gases, we considered the possible existence of 
steady-state solutions to the Navier-Stokes equation that are perturbations to this 
stagnation-point flow. With this geometry it is easy to show that any nonlinear 
perturbation to this stagnation-point flow that initially has no y-dependence will retain 
this property throughout its evolution. We exploit this feature by looking for solutions 
to the steady problem that consist of perturbations with no y-dependence. We find 
solutions to the governing equations that consist of a periodic row of steady counter- 
rotating vortices, with axes parallel to the y-axis. The vortices found are reminiscent of 
the vortex in an axisymmetric converging flow found by Burgers (1948). In both cases 
the persistent state of the vortices is due to a balance between the intensification of the 
vorticity due to the stretching of the vortex lines by the diverging flow parallel to the 
vortex axes, and the dissipation of the vorticity due to viscosity. As with the Burgers 
vortex the vortices found here can have arbitrary strength. 

Although this problem was initially investigated as a theoretical exercise, the flows 
found do have application to real fluid flow phenomena. The undisturbed background 
flow considered here is good approximation to the flow in a ‘four-roll mill’ used by 
Taylor (1934) in his study of droplet breakup. The stability of this two-dimensional 
flow has received little theoretical attention. Pearson (1959) found that, in the context 
of homogeneous turbulence, the extensional flow was always unstable. Aryshev, 
Golovin & Ershin (1981) looked at the linear stability of an inviscid fluid in such a 
regime, while Lagnado, Phan-Thien & Leal (1984), as a special case in their 
investigation of the stability of general two-dimensional linear flows, found an explicit 
expression for the temporal and spatial evolution of an arbitrary linear disturbance to 
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the vorticity in such a stagnation-point flow. In addition, Lin & Corcos (1984) found 
a similarity solution that described a set of decaying linear disturbances to this 
stagnation-point flow which allowed for a time-dependent strain rate, A .  Lagnado & 
Leal (1 990) investigated experimentally the three-dimensional disturbances that 
appeared in the extensional flow found in a ‘four-roll mill’ when the strain rate was 
sufficiently large. These disturbances first manifest themselves as a steady vortex in the 
centre of the mill, whose axis is aligned with the direction of the diverging flow. These 
instabilities closely resemble the vortices found in this work. For larger strain rates the 
flows in the experiments became time dependent. 

Another area in which there has been a significant interest in disturbances to 
stagnation-point flows has been in the context of the evolution of instabilities between 
two bodies of fluid separated by a shear layer. The primary Kelvin-Helmholtz 
instabilities to this flow takes the form of co-rotating vortices lying in the plane of the 
shear layer, with their axes perpendicular to the flow. As the amplitude of these vortices 
grows, a secondary instability occurs that takes the form of counter-rotating vortices 
aligned approximately with the main flow direction, and lying between the transverse 
vortices. These secondary instabilities have been studied both numerically and 
experimentally by several authors (see, for example, Corcos & Lin 1984; Knio & 
Ghoniem 1992; Lasheras, Cho & Maxworthy 1986; Lasheras & Choi 1988; Lin & 
Corcos 1984; Meiburg & Lasheras 1988; Metcalfe et al. 1987; Moser & Rogers 1991; 
Neu 1984). These longitudinal secondary vortices lie in a region where the flow is 
approximately that of the two-dimensional stagnation-point flow considered here. In 
this context the time-dependent behaviour of vortices in such flows has received 
particular attention from Lin & Corcos (1984) and Neu (1984). 

The equations governing these vortices in a stagnation-point flow are derived in $2 
and some solutions are presented in $3.  The asymptotic forms of the solutions for large 
strain rates in the converging flow and for large amplitudes of the vortices are given in 
$4 and $ 5  respectively. 

2. The governing equations 

stagnation-point flow 

with A > 0. The fully nonlinear, time-independent velocity and pressure perturbations, 
u and p ,  to this flow will satisfy 

We consider the situation where the full flow consists of perturbations to the steady 

U(X,Y,Z) = @YAY, -4 (1) 

with 

1 

P 
u.uu+ u ~ u u + u ~ u u =  --up+vv2u, 

v - u  = 0, 

where p is the density of the fluid, and v the kinematic viscosity. 
By looking for perturbations to the stagnation-point flow that are independent of the 

y-coordinate, and have no perturbation velocity component in this direction, (2) 
simplifies to 

and 
au aw 
ax aZ -+- = 0. 
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If we use a stream function $(x,z) such that 

all. all. u = (u,O,w) = --,o,- , ( a Z  ax) 

then the continuity equation will be satisfied, and (4) becomes 

where the vorticity, w, is given by 

309 

(6) 

If we look for solutions that are periodic in the x-direction, with period 27t/k, we can 
non-dimensionalize this equation, using k-' as a lengthscale, and u as a scale for $, 
yielding 

where the superscripts * indicate non-dimensional quantities. These superscripts will be 
dropped henceforth. 

Here 

is a non-dimensional measure of the strength of the converging flow compared to the 
rate of viscous dissipation. An alternative interpretation of this parameter is that it is 
the square of the ratio of the vortex separation to the thickness of the viscous layer 
associated with a stagnation-point flow (Burgers, 1948). However, for simplicity we 
will refer to it here in terms of being a measure of the flow strength. 

To find solutions we exploit the periodicity by expanding o and $ in Fourier series 
in x: 

co 
w(x, z )  = C a,(z) cos (2n - 1) x + b,(z) sin 2nx, 

$(x, z )  = C c,(z) cos (2n - 1) x + d,(z) sin 2nx. 

(12) 

(13) 

n-1 

m 

n-1 

These expansions can be substituted in to the governing equations and the coefficients 
of the various Fourier modes collected to given an infinite system of ordinary 
differential equations 

a: + Azai +(A- (2n - 1)2) a, = J2n-l(@, w), 

b: + Azbk + ( A  - 4n2) b, = J2,($, w ) ,  

c i  - (2n - 1)2c, = -a,, 

d: - 4n2d, = - b,, 
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where Jzn-l($, w)  and Jz,($, w )  are the appropriate components of the nonlinear terms. 
The symmetry of the expected solutions, 

$(x, z )  = $( -x, - z )  and $(x, z )  = - $(n-x, z) ,  (18) 

tells us that each a,(z) is an even function, and each b,(z) is an odd function in z.  
Hence, when looking for solutions, we can impose the boundary conditions 

(19) 

a,+O,b,-+O,c,+O and d,+O as z-tco, (20) 

ak(0) = b,(O) = ch(0) = d,(O) = 0, 

on each a,, b,, c, and d,, and we need only solve for z 2 0. 

3. Structure of the vortices 
The nature of small-amplitude disturbances can be found by linearizing the 

governing equations. Examination of the linearized vorticity equation for the 
fundamental mode 

shows us that for h < 1 there are no positive maxima nor negative minima, hence the 
only possible solution for this equation that decays as z+S. co is the trivial solution 
a,(z) = 0. When h = 1 equation (21) can be solved explicitly, and again the only 
solution that decays to 0 as z+ f co is the trivial solution. In this particular case it is 
of interest to notice that the full equations (9) and (10) admit the solution 

a;+hza;+(h- l)al = 0 (21) 

$ = w = cosx. (22) 

This is the solution found by Craik & Criminale (1986) as a special case in their 
examination of the stability of disturbances that consist of single Fourier modes in 
unbounded shear flows. For h > 1 it can be shown that all solutions to this linearized 
equation for al(z) decay as z-+ f co. Hence the condition that h > 1 is a necessary and 
sufficient condition for the existence of linear non-trivial solutions that decay in the far 
field. 

In the linearized problem, any functions a,(z) and b,(z) that satisfy the far-field 
boundary conditions will be identically zero for h < (2n - l)z and h < 42 respectively. 
The linearity allows solutions that are linear combinations of any non-zero modes 
found for h > 1. 

As will be seen below, the nature of a single mode of the linear disturbances is not 
intrinsically different from the nonlinear disturbances. The structure of the per- 
turbations is found to vary slowly as the amplitude is increased from infinitesimal to 
large values, with no abrupt or significant changes in its form. Hence we will not 
examine the linear solutions in any detail in this section. 

The criterion that A > 1 for non-trivial solutions to exist differs from the situation 
with the axisymmetric single vortex of Burgers (1948), for which solutions can exist for 
any strain rate. In both cases as the strain rate decreases so the enhancement of the 
vorticity by vortex stretching decreases. For a balance to occur between the 
enhancement of vorticity and viscous dissipation the dissipation rate must also 
decrease. This requires that the dissipation occurs over an ever increasing lengthscale. 
For the Burgers vortex this is possible as the diameter of the vortex can increase 
without bound. For the periodic vortices the distance between adjacent vortices 
provides an upper limit for the lengthscale of the dissipation, and hence gives a lower 
limit to the dissipation rate. This dissipation must be overcome by a sufficiently strong 
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FIGURE 1. Example of periodic vortices, with amplitude 10 and A = 4 showing (a) the perturbation 
streamlines (contour spacing l), and (b) the streamlines for the whole flow projected onto the 
(x, z)-plane. 

vorticity enhancement due to the vortex stretching, and so there is a critical strain rate 
below which disturbances cannot persist. This criterion can be rephrased in terms of 
lengthscales : for a given stagnation-point flow there is a critical vortex separation 
below which these vortices cannot exist. 

From the above argument we can also argue that vortices can always exist unless 
there is some other external constraint that imposes a maximum lengthscale on the 
periodicity of the disturbances. In such circumstances there would ineed be a critical 
strain rate, below which vortices cannot exist. This is the situation found by Lagnado 
& Leal (1990) in their experiments in the ‘four-roll mill,; although the details of their 
experiment and the present theory are not identical in all details, the disturbances that 
they observe are driven by essentially the same mechanism. They found that there was 
a critical strain rate in the flow driven by the ‘rollers’ for the existence of vortices, the 
axes of which were aligned with the straining flow. The form of the observed vortices 
is very similar to the vortices predicted in this current work. 

For finite-amplitude disturbances, the nonlinear terms are no longer negligible. To 
find solutions for the flow field, a truncated set of equations (14k(17) was solved 
numerically using a fourth-order Runge-Kutta method. Typically it was found that the 
magnitude of each successive mode decreases by an order of magnitude, ensuring good 
convergence using only a moderate number of modes. For O( 1) values of A and the 
amplitude, accurate solutions could be found by truncating the expansions (14)-( 17) 
after n = 3-6. 
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FIGURE 2. Three-dimensional representation of the total flow in a system of periodic vortices, showing 
how a sheet of fluid is swept into the vortices. In this example the amplitude is 10 and h = 4. The black 
lines show the paths of individual fluid elements. 

When looking at solutions of the governing equations we have two free parameters. 
The first of these, A, is the strength of the converging flow. The second is the amplitude 
of the solutions. Since the condition that h > 1 for the possible existence of non-trivial 
linear solutions is determined by the far-field decay of the function a,(z), where all 
disturbances are essentially linear, this condition will also imply the decay in the far 
field of this mode for the nonlinear solutions. This means that one of the boundary 
conditions (20) is automatically satisfied. Hence we have an extra degree of freedom 
which enables us to prescribe the amplitude of the perturbation vortices. We define this 
to be the maximum value of the stream function, which, with our assumed symmetry, 
will occur at the origin. Since the stream function has been nondimensionalized with 
respect to the kinematic viscosity, this amplitude is essentially the Reynolds number of 
the individual vortices. 

The structure of typical periodic vortices is shown in figure 1. Figure 1 (a) shows the 
stream function for the perturbation flow for h = 4 where the amplitude is 10. In figure 
l(b) the streamlines are shown for the total velocity components in any plane 
perpendicular to the y-axis. It can be seen from this diagram how the fluid flow 
converges towards the z = 0 plane and then swirls into a series of counter rotating 
vortices parallel with the y-axis. A three-dimensional spatial representation of this 
swirling motion is illustrated in figure 2, which shows the motion of a sheet of fluid as 
it is swept into and along the vortices; some paths of individual fluid elements are also 
shown. These vortices are reminiscent of the vortices found by Lagnado & Leal (1990), 
even though, as mentioned earlier, the details of the experimental flow are not exactly 
the same as the current theory. They also appear to correspond to the experimentally 
observed vortex in a stagnation-point flow illustrated by Aryshev et al. (1981). 



Periodic steady vortices in a stagnation-point f low 

(4 

4 

2 

z o  

- 2  

- 4  

-n  - 0.5~ 0 0.511 n 

(el -2 0 2 
\ I  

4 

2 

z o  

- 2  

- 4  

,n 0 0.5n X 

X 

4 1  

2 

- 2  

L 
-n  

id) 

4 

2 

z o  

-2  

- 4  

-n  

0 - 

I " '  

313 

2 

- 0.5~ 0 0 . 5 ~  x 

!1 
f 

l- 

0 L 

- 0 . 5 ~  0 0.5n 7. ., 
FIGURE 3. Streamlines of perturbation vortices of amplitude 10 for (a) A = 2 and (b) A = 8 (contour 
spacing 1). The corresponding streamlines for the whole flow projected into the (x, z)-plane are shown 
in (c) and (d) .  



314 0. S.  Kerr and J.  W. Dold 

The form that the vortices take as the strain rate, A, is varied is illustrated in figure 
3. This shows the streamlines for two other values of h with the same amplitude 10; 
h = 2 and h = 8. For low values of h the confining effect of the converging flow is 
weak, and the vortices extend further from the plane z = 0. As h is increased the 
vortices are confined to an ever-decreasing region near this plane. For larger values 
of h the streamlines of the perturbation respond with increased curvature as they cross 
the plane z = 0. This is shown in figure 4(a) for h = 36. The perturbation vorticity is 
confined mainly to a region about z = 0 with thickness of order as seen in figure 
4(b) .  The detailed structure in the large4 limit for linear disturbances is examined in 
the following section. 

The change in the vortices as the amplitude is varied is shown in figure 5 and 6. 
Initially, for low amplitudes, the perturbation stream function of the vortices is nearly 
symmetrical about a vertical plane through the core of the vortices, as would be 
expected from the linear solutions (figure 5a). As the amplitude increases, a skewness 
develops in this stream function (figure 5b). As the amplitude increases further the 
stream function tends towards a state that regains its original symmetry (figure 5c). 
Although this is apparent in the plots of the stream function, this trend does not 
manifest itself clearly in the plots of the streamlines. The streamlines corresponding to 
the examples in figure 5 are shown in figure 6. The most notable transition is that for 
low amplitudes the streamlines (figure 6a)  for the total flow do not exhibit any spiral 
flow as such. The paths of the fluid elements are swept towards the cores of the 
‘vortices’ without swirling around them. As a result there is a continuous wavy surface 
that divides the upward-flowing fluid from the downward-flowing fluid. A local 
analysis shows that the transition from flows that (when looked at as phase planes) 
have nodes at the centre of the vortices to flows that have spiral flows occurs when 

Thus for low amplitudes the singular points at the cores of the vortices are always 
nodes, and as the amplitudes increase they become foci. Equation (23) is not equivalent 
to the comparable criterion of H. King quoted in Lin & Corcos (1984), which as stated 
is incorrect. The existence of a wavy interface with nodes in the flow field was found 
in the experiments of Lagnado & Leal (1990). In their figure 5 ( d )  a sinuous separation 
line is visible between the two incoming streams of fluid, along which there exist some 
nodes in the total flow, but no vortices with a full swirling motion are present. 

For larger-amplitude disturbances the vortices develop a spiral flow, with the surface 
separating the two incoming streams of fluid wrapping itself around the vortex core. 
As the amplitude increases further the spiral flow eventually dominates the flow field 
near the plane z = 0. 

The asymptotic form of the large-amplitude vortices is examined in $5.  

4. Large-strain-rate asymptotics 
The behaviour of vorticity perturbations in a converging flow with a large strain has 

been looked at by Neu (1984) in the context of developing a time-dependent evolution 
equation for the amplitude of a nonlinear spatially varying vortex sheet, and its 
displacement in the direction of the converging flow. His analysis is of lower precision, 
but enables time dependency to be taken into account. The analysis presented here goes 
to higher orders for the time-independent vortices that concern us, and would not be 
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FIGURE 4. An example of vortices for a stronger strain rate in the flow, A = 36, and amplitude 10, 
showing (a) the perturbation streamlines (contour spacing l), and (b) the vorticity (contour 
spacing 5). 

as readily extended to the time-dependent case of Neu. The decaying linear similarity 
solutions of Lin & Corcos (1984) are exact solutions valid for arbitrary values of A, but 
do not describe the steady-state solutions of interest here. 

In this section we look at the structure of the linear vortices in the limit A +a. The 
vortices examined will also describe the leading-order nonlinear behaviour of vortices 
with order-one amplitudes in this asymptotic limit. This is due to converging flow 
essentially confining the vorticity, at least to leading order, in a thin region near the 
plane z = 0 of thickness This is reminiscent of the Burgers' vortex sheet (Burgers 
1948). Rescaling the governing equations by this factor in the z-direction leads to a set 
of equations where the nonlinear terms are of lower order than the remaining terms, 
and can be ignored to leading order. 

Since the vortices to be considered are linear they can be represented in terms of their 
Fourier modes. The coefficient of each mode is then a function of z that independently 
satisfies 

- h z d  - Ao = on - n%, 
with boundary conditions 

(24) 

1cr(O) = 1 ,  1cr(z), w(z)+O as z+kco. (26) 

Since we are looking at linear disturbances we can choose the amplitude arbitrarily. 
For simplicity we make the choice that the amplitude will be 1. This is the first boundary 
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FIGURE 5. Perturbation streamlines for vortices with h = 6 and amplitudes (a) 2.5 (contour 
spacing 0.25), (b)  10 (contour spacing l), (c) 40 (contour spacing 4) and ( d )  160 (contour 
spacing 16). 
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condition given in (26). In solving these equations we use the symmetry condition that 
requires both $ and o to be even functions in z. We also examine only the case 
n =  1. 

An examination of these equations shows that there are two lengthscales of 
importance: when z = O(1) and when z = O(h-lI2). Although this divides the domain 
into three regions the symmetry condition means that there are essentially only two 
regions that have to be joined together using matched asymptotic expansions. 

We define an outer expansion 

*(z; A)  = $,(z) + A-112$1,2(z) + A-l$,(z) + . . ., 
4; A)  = oo(z) + h-1 /2W1/ , (Z)  + h-1w1(z) + . . ., 

(27) 

(28) 

and an inner expansion 

where 
5 = h'/2z. 

-lJ2;,-Qo = a;, 
Y;: = -a,. 

The leading-order inner equations are 

The general solution to (32) is 

(32) 

(33) 

The condition that Q,(o is an even function tells us that A,  = 0. Using this we can then 
find the solution to the stream-function equation (33): 

Yo(z) = - B, [r e-c212 d c  d r  + C, 5+ Do. (3 5 )  
o n  

Again the condition that the solutions are even functions gives C, = 0. The choice that 
the amplitude is 1 yields Do = 1. 

At O(h-l/') the equations are essentially the same, and hence the solutions will be 
similar, the only difference being that DlI2  = 0. At O(h-l) the equations are 

QT+CQ; +a, = a, = ~,e-c ' /~ ,  

ul;. = -a,+ Yo. 

The even solution to (36) is 

o1 = B, e-C'IZ + B 0 e-C2/2 [&'/2 1: e-5"'/2 d c  d c .  

Similarly the next-order solution is 

11 
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FIGURE 6. Streamlines of the whole flow projected onto the (x, z)-plane corresponding to the finite- 
amplitude vortices shown in figure 5,  with amplitudes (a) 2.5, (b)  10, (c) 40 and ( d )  160. 
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The corresponding solutions for the stream function are 

319 

and 

Higher-order terms could be found in a similar fashion. 
In the outer region the leading order equations are 

zw; - wo = 0, (42) 
$5-$, = -wo .  (43) 

wo = ao/z. (44) 

w,/z = a1/21z, (45) 
(46) 

In order to be able to match these solutions to the inner solutions it is necessary that 
either the large-< asymptotic behaviour of some Oi must have a c' term, or that the 
constants, ai, are zero. Potentially a c1 contribution from an 0, first occurs from the 
integral term in (38). This contribution would only be able to match with the outer term 
wl/z. Hence the z-l term in wo cannot be matched with any term in the inner solutions 

The vorticity equation (42) has the solution 

At the next two orders the solutions are 

w1 = a l / z  + ao/z3 + (a, log z)/z. 

and we have 
a, = 0. (47) 

Knowing this, the corresponding solutions in the stream-function expansion are 

$o = hoe-', (48) 
(49) 
(50) 

for some constants bi. Here Ei(z) is the exponential integral function (see Abramowitz 
& Stegun 1964). 

In order to match the stream functions in the two regions we have to find the large- 
< behaviour of the double integral in (35). This double integral can be re-expressed as 

$1/2 = -;alI2(Ei( - z) ez - Ei(z) e-') + blI2 e-', 
$l = -;al(Ei( - z) ez - Ei(z) e-') + b, e-', 

where i' erfc is the first integral of the complementary error function (see Abramowitz 
& Stegun 1964). For large < this term decays as z-2e-~z/2 and as such plays no role in 
the matching process. 

11-2 
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FIGURE 7. The (a) stream function and (b) vorticity distribution predicted by the large-h asymptotic 
theory for h = 36. This is virtually indistinguishable from the full solution for h = 36 and 
amplitude 1. 

Matching with the inner solutions using Van Dykes' matching rules gives 

B,, = 0, Bl,2 = (2/7t)'l2, B, = 2/7t, (52) 

b, = 1, blj2 = (2/7t)1'2, b, = 2/7t, (53) 

and a. = 0, a,/, = 0, a, = 1. (54) 
In order to be able to determine the value of B3/2 the second-order large-< asymptotic 
behaviour of the second quadruple integral in (41) needs to be found. This term, which 
grows as 5, has not yet been determined. 

With these results a composite expansion can be formed for $, using only the first 
three terms in both the inner and outer expansions: 

If the contours for this approximation are plotted for h = 36 (figure 7) the results are 
virtually indistinguishable from those that are obtained by solving the full nonlinear 
problem with amplitude 1, with the differences not visible in the plots presented here. 

The analysis of this section reveals the essential difference between the decaying 
similarity solution of Lin & Corcos and the steady-state solutions that are the concern 
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of this work. To derive their similarity solutions they have to impose a Gaussian 
vorticity distribution. This is the same as the leading-order vorticity found here, and 
hence plots of the respective solutions will appear similar. However, in this large-h limit 
the Gaussian distribution of vorticity is not the exact distribution found here. In 
particular, the non-zero value of a; means that there is a weak relatively slowly decaying 
component to the vorticity that penetrates into the outer region that is excluded by 
the form of the similarity solution. It is the enhancement of this vorticity by vortex 
stretching in this outer region that enables the disturbances to survive despite the 
dissipation due to viscosity. 

5.  Large-ampli tude asymp totics 
In this section we examine the form that the vortices take in the asymptotic limit of 

large amplitude. Although Neu (1984) considered a model for the large-amplitude limit 
for ‘collapsed vortices’ he made some assumptions that do not hold up to detailed 
examination. He assumed that the vortices could be considered in isolation and taken 
to be approximately circular. The assumption that the vortex was circular was a 
reasonable approximation for the vortex found in his numerical simulation; however, 
this is not always the case. For instance the vortices found here for lower values of h 
are distinctly elongated in the z-direction. However, it is a reasonable approximation 
for larger values of A. The other assumption, that the vortices could be considered in 
isolation is not strictly valid if one is looking for a steady-state solution. Robinson & 
Saffman (1984) showed that steady single vortices could not exist in the stagnation- 
point flow considered here, but only in stagnation-point flows where there was an 
additional non-zero component of the converging flow, however weak, coming in 
along the x-axis. However Moffatt, Kida & Ohkitani (1994) have re-examined this 
problem, and have shown that although the solutions of Neu are not steady, the lateral 
leakage of vorticity is asymptotically small, even if there is a small lateral diverging 
component to the flow, and so the vortices can be approximated as being steady. The 
model of Neu will be a valid approximation for larger values of A. By retaining the 
periodicity we do not have to make an approximation of a steady flow as the vorticity 
that diffuses laterally out of any single vortex will be cancelled by vorticity of the 
opposite sign diffusing out of its neighbour, and so the confining effect on the vorticity 
of the extra converging component of the background flow that is required for a steady 
state for a single vortex is not required here. In addition we make no a priori 
assumptions about the exact shape of the vortices, and so this analysis does not require 
large values of A. 

If we let the amplitude of the vortices be p, then we can rescale (9) and (10) to give 

where pwt = o  and p$?= $. 

From the leading-order behaviour of (56), 

---+--=o a$+ a,? a$? a,+ 
a Z  ax ax a Z  ’ (59) 
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we see that $t and wt will have some functional relationship of the form 

wt = g($9  (60) 
for some as yet unknown function g ( . ) .  Such a relationship can be verified by 
examining solutions found by solving (14F(17) to find @ and w for some large 
amplitude (say, p = 400). If the rescaled values of $ and w evaluated at the vertices of 
any grid (such as that used for the contour plots in previous figures) are then plotted 
on a scatter diagram, it can be seen that all of the points lie close to a single curve (see 
figure 8). 

Further information can be extracted from the vorticity equation by integrating (56) 
over any area, S,, bounded by a closed streamline, C,. Since the perturbation velocity 
is divergence free it is straightforward to show that such an integral of the left-hand 
side of (56) is identically zero, leaving the exact identity 

By re-expressing the first integral as a double integral in x and z, and integrating by 
parts, we find 

where x,+ and zsi(x) are the appropriate limits for the closed streamline. Note that 
inside the integral we are evaluating wt on the streamline, hence it will take the value 
g(@t)  to leading order in the limit p+m. As this is a constant around the streamline, 
it can be taken outside the integral. The remaining integral is simply the area enclosed 
by the streamline. This method essentially uses the techniques of the Prandtl-Batchelor 
theorem (Batchelor 1956). 

We can also simplify the second integral by the use of the divergence theorem 

Again, to leading order, we can extract the g’($+) term from inside the integral, and use 
the divergence theorem again to give 

0 = Ag($t)A($9+g’($t)[ g($+>dS, (64) 
SP 

where A(@)  is the area enclosed by the streamline. 
Equation (64), when combined with the stream-function equation and the 

periodicity, is almost sufficient to define the problem. It is fully defined when we recall 
that the rescaling by the amplitude, p, gives the requirement that $t takes the value 1 
at the origin. These equations were solved numerically using an iterative procedure to 
find qkt(x, z) and g ( .  ). First (57) was re-expressed in terms of an integral equation using 
the periodic Green’s function : 

G(x, z ,  x’, z’) g,($t(x’, z’)) dz‘ dx’, (65) 

(66) 
1 

4n 
where G(x, Z, x’, z’) = --log (cash (Z - z’) - cos (X - x’)).  
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For a given function g,( .), this integral was discretized over a grid to give a system of 
equations that were solved to find $i(x,z) using NAG library routines. Reasonable 
accuracy could be achieved by the use of a limited range in the z-direction because the 
vorticity was found to decay rapidly with increasing Iz/. Further simplification was 
possible by using the symmetries of the problem, which meant that the integral needed 
only to be evaluated over a quarter of a vortex cell, thus reducing the computational 
domain by a factor of 8. The solution found could then be used to find an updated 
version of the function g,,, (to within a multiplicative constant) using the ordinary 
differential equation 

0 = hg,+l($t) +gh+1($9 J s,($+> dS. (67) 
s* 

This could then be used to calculate an updated version of $;+, where the condition that 
$(O,  0) = 1 yields the multiplicative constant for g,,,. This iterative procedure 
converges to give both $t and g( a )  for asymptotically large-amplitude disturbances. 
The curves g($t) for h = 4, 8, 16 are superimposed on the scatter plots in figure 8, 
showing good agreement. 

When the corresponding curves g($) for a Burgers vortex with the same maximum 
value of the vorticity is superimposed on one half of these graphs they are found to be 
virtually indistinguishable from those calculated here for h = 6 and 8, with only small 
differences visible for h = 4 (see figure 8). However, for these lower values of h the 
streamlines are not circular as in the axisymmetric Burgers vortex, or as in the 
asymptotic limit found by Moffatt et al. (1994) for a quasi-steady vortex in the 
extensional flow considered here. As h increases this similarity would be expected, as 
the external flow confines the vortices ever closer to the plane z = 0, and so they are 
free to take up this circular configuration. Why the agreement nevertheless holds so 
well for the lower values of h is not clear. 

6.  Conclusion 
In this paper we have found a new class of steady-state three-dimensional nonlinear 

solutions to the Navier-Stokes equation. These consist of a periodic array of counter- 
rotating vortices lying in a plane of symmetry in a stagnation-point flow, with the axes 
of the vortices aligned with the diverging component of the flow. The only previously 
known flows that are steady-state perturbations to the stagnation-point flow, and that 
are solutions to the Navier-Stokes equation, are the Burgers vortex sheet (Burgers 
1984) and the single Fourier mode solution of Craik & Criminale (1986). We feel that 
the existence of these solutions to the Navier-Stokes equation is of both intrinsic and 
practical interest. They lead to a clearer interpretation of experimental results such as 
those of Lagnado & Leal (1990) and Aryshev et al. (1981). We have been able to show 
that the presence of vortices and of a wavy surface of separation between the incoming 
streams in the ' four-roll mill' experiment are different manifestations of the same type 
of phenomenon, the former simply corresponding to a larger-amplitude perturbation 
than the latter. The time-dependent numerical analysis of Lin & Corcos (1984) 
indicates that, under certain restrictions such as periodicity, these structures may well 
be stable. We have only considered steady-state vortices here. A more general time- 
dependent analysis may be able to provide a relationship between an initial vorticity 
distribution and the final amplitude of the vortices, as is possible with the Burgers 
vortex. 
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